An Efficient Multi-core Implementation of the Jaya Optimisation Algorithm
نویسنده
چکیده
In this work, we propose a hybrid parallel Jaya optimisation algorithm for a multi-core environment with the aim of solving large-scale global optimisation problems. The proposed algorithm is called HHCPJaya, and combines the hyper-population approach with the hierarchical cooperation search mechanism. The HHCPJaya algorithm divides the population into many small subpopulations, each of which focuses on a distinct block of the original population dimensions. In the hyper-population approach, we increase the small subpopulations by assigning more than one subpopulation to each core, and each subpopulation evolves independently to enhance the explorative and exploitative nature of the population. We combine this hyper-population approach with the two-level hierarchical cooperative search scheme to find global solutions from all subpopulations. Furthermore, we incorporate an additional updating phase on the respective subpopulations based on global solutions, with the aim of further improving the convergence rate and the quality of solutions. Several experiments applying the proposed parallel algorithm in different settings prove that it demonstrates sufficient promise in terms of the quality of solutions and the convergence rate. Furthermore, a relatively small computational effort is required to solve complex and large-scale optimisation problems.
منابع مشابه
Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملJAYA ALGORITHM WITH PASSIVE CONGREGATION FOR DESIGN OF STRUCTURES WITH DIAGONAL MEMBERS
Partricular features of overpassing local optima and providing near-optimal soultion in practical time has led researchers to apply metaheuristics in several engineering problems. Optimal design of diagrids as one of the most efficient structural systems in tall buildings has been concerned here. Jaya algorithm as a recent paramter-less optimization method is employed to solve the problem using...
متن کاملAn efficient algorithm for finding the semi-obnoxious $(k,l)$-core of a tree
In this paper we study finding the $(k,l)$-core problem on a tree which the vertices have positive or negative weights. Let $T=(V,E)$ be a tree. The $(k,l)$-core of $T$ is a subtree with at most $k$ leaves and with a diameter of at most $l$ which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, t...
متن کاملA Global Optimisation Toolbox for Massively Parallel Engineering Optimisation
A software platform for global optimisation, called PaGMO, has been developed within the Advanced Concepts Team (ACT) at the European Space Agency, and was recently released as an open-source project. PaGMO is built to tackle high-dimensional global optimisation problems, and it has been successfully used to find solutions to real-life engineering problems among which the preliminary design of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.03366 شماره
صفحات -
تاریخ انتشار 2016